

STAR Results from the RHIC Beam Energy Scan

Terence J Tarnowsky

(for the STAR Collaboration)

Michigan State University

RHIC/AGS Users' Meeting June 20, 2011

Outline

- Introduction to the Beam Energy Scan Program
- STAR Detector
- Bulk observables
- Correlations and Fluctuations
- **Summary**

Nuclear Matter

• Finite (charged) nuclear matter occurs at low T and $\mu_B \approx 922$ MeV \rightarrow energy density (ϵ) ≈ 0.15 GeV/fm³.

2011 RHIC/AGS Users' Meeting June 20-24, 2011

• Lattice QCD:

- -Transition between hadronic matter and quark-gluon matter predicted at $T \approx 170$ MeV.
- -Critical point predicted.
 - Transition crossover to left, 1st order to right.

- Using RHIC to run an "energy scan" to search for predicted QCD critical point.
- For 2010, we had Au+Au collisions at $\sqrt{s_{NN}} = 200$, 62.4, 39, 11.5, and 7.7 GeV.
 - 2011 added Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 27 GeV.
- Can examine our observables to look for non-monotonic behavior as a function of collision energy.

STAR Detector

- STAR is a large acceptance detector.
 - Good η and φ coverage for measuring fluctuations.
- TPC: $|\eta| < 1.0$, TOF: $|\eta| < 0.9$

• TOF upgrade has enhanced STAR's PID capabilities.

Rapidity

Rapidity

Particle Yields and Ratios

NA49: PRC 66 (2002) 054902,

PRC 77 (2008) 024903,

PRC 73 (2006) 044910

STAR: PRC 79 (2009) 034909,

arXiv: 0903.4702; PRC 81 (2010)

024911

E802(**AGS**): PRC 58 (1998) 3523,

PRC 60 (1999) 044904

E877(AGS): PRC 62 (2000) 024901

E895(AGS): PRC 68 (2003) 054903

Chemical and Kinetic Freeze-out

- Baryon chemical potential (μ_B) increases with energy.
- Freeze-out Temperatures:
 - T_{chem} increases with energy before plateau at ~165 MeV.
 - T_{kinetic} decreases below 7.7 GeV.
- Average radial flow velocity increases with energy.

STAR: PRC 79 (2009) 034909

STAR: NPA 757 (2005) 102

Andronic et al. NPA 834 (2010) 237

Strong Parity Violation

 $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$ ¥ STAR ♦ HIJING △ HIJING + v_a ○ UrQMD □ MEVSIM -0.4 Red: same charge Blue: opp charge 70 60 50 30 % Most central

STAR Collab, Phys. Rev. Lett. 103 (2009) 251601

Charge separation is given by a *P*-odd term "a" in $\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin(\phi^{\pm} - \Psi_{RP})$

Kharzeev, Pisarski, Tytgat

Phys.Rev.Lett.81:512-515,1998

Terence Tarnowsky

S. Voloshin, PRC 70 (2004) 057901 $<\cos(\phi_{\alpha}^{\pm} + \phi_{\beta}^{\pm} - 2\psi_{RP})>$ 2011 RHIC/AGS Users' Meet $= \left[\left\langle v_{1\alpha}^{\pm} v_{1\beta}^{\pm} \right\rangle + B^{in}\right] - \left[a_{\alpha}^{\pm} a_{\beta}^{\pm} + B^{out}\right]$ June 20-24, 2011 P-even

Energy Dependence of Charge

Difference between same and opposite sign charge correlations decreases at lower collision energies.

- Magnitude of magnetic field decreases, but persists longer.
 - Prediction that charge separation increases at lower energies
 - Effect then vanishes below energy at which formed.

V. Toneev and V. Voronyuk, EPJ Web of Conferences **13**, 02005 (2011)

- Balance function wrt reaction plane is related to 3-particle correlator.
 - Balance function result reproduces published STAR data.
- Blast wave model with local charge conservation and v₂ describes most of balance function result.
 - S. Schlichting et al., PRC 83 (2011) 014913
- Monotonic decrease of correlation with decreasing energy.
 - v₂ also decreasing in similar fashion.

Function

Directed and Elliptic Flow

Hadron Directed Flow (v₁)

- v₁ provides information from the earliest stages of the collision.
- Proton and anti-proton v₁
 are increasingly different
 at lower collision energies.
- Slope of proton v₁ changes sign.
 - Good agreement with other experimental measurements.

$$v_n = \langle \cos n \cdot \phi \rangle$$

$$\phi = \tan^{-1} \frac{p_y}{p_x}$$

$$v_1$$
 = directed flow v_2 = elliptic flow

E895: PRL 84 (2000) 5488 NA49: PRC 68 (2003) 034903

- Anti-flow due to tilted expansion wrt the beam axis could explain sign change of slope.
 - Effect should be stronger in mid-central collisions.
 - Should approach zero in central collisions.
- Baryon stopping could play a role.
 - J. Brachmann et al., PRC 61 (2000) 24909.
 - L. P. Cernai, D. Rohrich 458 (1999) 454.
 - R. Snellings et al., PRL 84 (2000) 2803.

NCQ Scaling of v₂

- v_2 of ϕ at 11.5 GeV below prevailing trend at low m_{T-1}
 - \bullet ϕ has small interaction cross-section, decouples early.
 - Less partonic collectivity at low energies?
 - ϕ v₂ at intermediate-p_T would help confirm.

- Differences observed between v₂ for particles and anti-particles.
- $v_2(p) > v_2(pbar)$
 - Related to net-baryon density?
- $v_2(K^+) > v_2(K^-)$
 - Associated production of K+, absorption of K-?
- $v_2(\pi^-) > v_2(\pi^+)$
 - Coulomb repulsion?

Azimuthal HBT

- Measure
 eccentricity at
 freeze out.
 - Depends on:
 - Source lifetime.
 - Pressure gradient.

$$\varepsilon_F = \frac{R_y^2 - R_x^2}{R_y^2 + R_x^2} \approx 2 \frac{R_{2,s}^2}{R_{0,s}^2}$$

Kolb and Heinz, 2003, nucl-th/0305084

Azimuthal Dependence of HBT

- STAR results do not show non-monotonic behavior.
- CERES point, physics or anomalously low?
 - New STAR data at 19.6
 GeV will provide an answer.
- Transport model
 (UrQMD) best describes
 STAR (and AGS) results.

E895: PLB 496 (2000) 1

CERES: PRC 78 (2008) 064901 NA49: PRC 77 (2008) 064908 STAR: PRL 93 (2004) 012301

Terence Tarnowsky

2011 RHIC/AGS June 20-

Particle Ratio Fluctuations

$$p/\pi \\ (p^{+} + p^{-})/(\pi^{+} + \pi^{-}) \\ K/\pi \\ (K^{+} + K^{-})/(\pi^{+} + \pi^{-}) \\ K/p \\ (K^{+} + K^{-})/(p^{+} + p^{-})$$

Characterize Fluctuations

• NA49 uses the variable $\sigma_{\rm dyn}$

$$\sigma_{\text{dyn}} = sign(\sigma_{\text{data}}^2 - \sigma_{\text{mixed}}^2)\sqrt{|\sigma_{\text{data}}^2 - \sigma_{\text{mixed}}^2|}$$

 σ is relative width of K / π distribution

- STAR uses $V_{\rm dyn.}$
 - Measures deviation from ideal Poisson behavior,

$$v_{\text{dyn},K\pi} = \frac{\left\langle N_K \left(N_K - 1 \right) \right\rangle}{\left\langle N_K \right\rangle^2} + \frac{\left\langle N_\pi \left(N_\pi - 1 \right) \right\rangle}{\left\langle N_\pi \right\rangle^2} - 2 \frac{\left\langle N_K N_\pi \right\rangle}{\left\langle N_K \right\rangle \left\langle N_\pi \right\rangle}$$

• It has been demonstrated (for K/π and p/π) that,

$$\sigma_{dyn}^2 \approx V_{dyn}$$

Terence Tarnowsky

Excitation Function for $V_{\text{dyn},p/\pi}$

2011 RHIC/AGS Users' Meeting

June 20-24, 2011

- NA49 $\sigma_{\text{dyn},p/\pi}$ converted to $v_{\text{dyn},p/\pi}$.
- TPC+TOF (GeV/c):
 - $\pi : 0.2 < p_T < 1.4$
 - $p : 0.4 < p_T < 1.8$
 - TPC+TOF includes statistical and systematic errors from electron contamination.
- Agreement with measurements from NA49 at low energies.

(NA49 data from: C. Alt et al. [NA49 Collab.], Phys. Rev. C 79, 044910 (2009)

UrQMD and HSD predictions both change sign at high energies.

Terence Tarnowsky

June 20-24, 2011

NA49 $\sigma_{\rm dyn,K/p}$ converted to $v_{\rm dyn,K/p}$ using $\sigma_{\rm dyn}^2 = v_{\rm dyn}$.

- TPC+TOF (GeV/c):
 - $K : 0.2 < p_T < 1.4$
 - p : $0.4 < p_T < 1.8$
- TPC+TOF includes statistical and systematic errors from electron contamination.
- Large deviation between STAR and NA49 result at $\sqrt{s_{NN}} = 7.7 \text{ GeV}.$

(NA49 data from: T. Anticic, et al [NA49 Collab.] arXiv:1101.3250v1 [nucl-ex])

Models predominantly independent of experimental acceptance.

• NA49 $\sigma_{\text{dyn},K/\pi}$ converted to $v_{\text{dyn},K/\pi}$ using $\sigma^2_{\text{dyn}} = v_{\text{dyn}}$.

- TPC+TOF (GeV/c):
 - $\pi : 0.2 < p_T < 1.4$
 - $K : 0.2 < p_T < 1.4$
- TPC+TOF includes statistical and systematic errors from electron contamination.
 - Pion contamination of kaons < 3% using TPC and TOF.
- Difference between STAR and NA49 result below √s_{NN} = 11.5 GeV.
 (NA49 data from C. Alt et al. [NA49

(NA49 data from C. Alt et al. [NA49 Collab.], Phys. Rev. C 79, 044910 (2009)

- Both models show little acceptance effects.
 - UrQMD predicts little energy dependence.
 - HSD predicts an energy dependence.

Higher Moments of Conserved Quantities

(Skewness and kurtosis of net-protons)

Connection to Physical Quantities

- Higher moments of net-proton distribution can be related to thermodynamic susceptibilities.
 - $(S\sigma)_B = \chi_B^3 / \chi_B^2$
 - $(\kappa \sigma^2)_{\rm B} = \chi_{\rm B}^4 / \chi_{\rm B}^2$
 - (M.Cheng et al, Phys. Rev. D 79, 074505 (2009), F. Karsch and K. Redlich, Phys. Lett. B 695, 136 (2011))
- Predictions that critical fluctuations contribute to higher moments and are strongly dependent on correlation length (ζ) of the system:
 - 4^{th} order moments go as ζ^7 . (M. A. Stephanov, Phys. Rev. Lett. $102,\,032301\,(2009))$
- For net-charge, change index from B to Q. For net-kaons, change B to S.

Products of the Moments

- Products of the moments cancel volume effects.
- Deviation from Hadron Resonance Gas (HRG) prediction below 62.4 GeV.
 - For HRG:

Au+Au Collision

• 7.7 GeV

▲ 11.5 GeV

39 GeV

40

20

Net-proton

|y|<0.5

10⁴

10

-20

Events

- $S\sigma = tanh(\mu_B/T)$
- $\kappa \sigma^2 = 1$

HRG: F. Karsch and K. Redlich, Phys. Lett. B 695, 136 (2011)

Summary I

- STAR has collected and analyzed an enormous amount of data during the first phase of a very successful RHIC Beam Energy Scan program.
 - Thanks to C-AD and the STSG.
- Bulk observables such as particle yields and ratios, and chemical and kinetic freeze-out parameters have been measured at all energies.
- Studying the energy dependence of dynamical azimuthal charge correlations, azimuthal HBT, v_1 , v_2 , etc.
 - Some differences between particle/anti-particle v₂.
 - Azimuthal HBT result from STAR consistent with smooth evolution with energy, different than previous experimental measurement?

Summary II

- New results for dynamical particle ratio fluctuations from data collected during first part of the RHIC energy scan to search for QCD critical point.
 - An additional data point below $\sqrt{s_{NN}} = 7.7$ GeV (e.g. $\sqrt{s_{NN}} = 5$ GeV) could provide additional support to the observed trends.
- Higher moments of the distributions of conserved quantities (e.g. net-proton, net-charge) are expected to be sensitive to critical fluctuations.
 - For net-proton, Sσ and $\kappa\sigma^2$ are consistent with the HRG prediction above $\sqrt{s_{NN}}$ = 39 GeV, but slightly below the prediction at lower energies.
- More results to come. 2011 data at $\sqrt{s_{NN}} = 19.6$ GeV is already being analyzed and early results are here! $\sqrt{s_{NN}} = 27$ GeV will "fill in the blank" in our excitation functions.